Watson: diferenças entre revisões

Fonte: aprendis
Saltar para a navegaçãoSaltar para a pesquisa
Sem resumo de edição
Sem resumo de edição
Linha 19: Linha 19:
== Sumário ==
== Sumário ==
'''  
'''  
<p align=”Justify”>'''Introdução:''' O Watson tem cerca de 200 milhões de páginas de conteúdo em linguagem natural (equivalente à leitura de 1 milhão de livros). O Watson utiliza a estrutura Apache Hadoop para facilitar o pré-processamento em grandes volumes de dados para criar conjuntos de dados internos à memória, usados em tempo de execução. </p>
<p align=”Justify”>No último século, a IBM realizou várias inovações científicas graças ao seu compromisso com a pesquisa e sua tradição de Grandes Desafios. Esses Grandes Desafios – como o DeepBlue®, projetado para rivalizar com o campeão mundial de xadrez Gary Kasparov – são um esforço para impulsionar a ciência de maneiras que antes não eram consideradas possíveis. O Watson é o mais novo Grande Desafio de Pesquisa da IBM, projetado para desenvolver a ciência do processamento de linguagens naturais através de avanços na tecnologia de perguntas e respostas. </p>
<p align=”Justify”>O Watson é um sistema otimizado para carga de trabalho,baseado na arquitetura IBM DeepQA e executado em um cluster de servidores baseados em processadores IBM®POWER7®. Depois de quatro anos de pesquisa e desenvolvimento intensos por parte de uma equipe de pesquisadores da IBM, o Watson competiu no programa de TV Jeopardy! em fevereiro de 2011, competindo no mesmo nível de especialistas humanos em termos de precisão, confiança e velocidade contra dois dos mais conhecidos e bem-sucedidos campeões de Jeopardy!, KenJennings e Brad Rutter. <ref name=" IBM">IBM Corporation 2011 IBM Systems and Technology GroupRoute, “Watson – Um Sistema Projetado para Respostas: O futuro do design de sistemas otimizados para carga de trabalho,” 2011.</ref></p>
 
== Jeopardy! O desafio da IBM ==
<p align="justify">Hoje em dia, com as empresas cada vez mais captando informações essenciais aos negócios em documentação de linguagem natural, há um interesse crescente em sistemas otimizados para carga de trabalho que analisam profundamente o conteúdo de perguntas em linguagem natural para responder a elas com precisão. Avanços na tecnologia de respostas a perguntas (QA, question answering) vão ajudar cada vez mais os profissionais na tomada de decisões críticas e pontuais em áreas como atendimento médico, business intelligence, descoberta deconhecimento, gerenciamento de conhecimento corporativo e atendimento ao cliente. Tendo a QA em mente, a IBM impôs o desafio de desenvolver um sistema computacional chamado “Watson” (em homenagema Thomas J. Watson, fundador da IBM), que pudesse competir ao nível de campeões humanos em tempo real no programa de perguntas e respostas da TV dos EUA "Jeopardy"! O Watson representa um avanço impressionante no design e análise de sistemas. Ele executa a tecnologia DeepQA da IBM, um novo tipo de capacidade analítica que pode executar milhares de tarefas simultâneas em segundos para fornecer respostas precisas a perguntas. Ativado pela tecnologia dos processadores IBMPOWER7, o Watson é um exemplo das cargas de trabalho de análise complexa que estão a tornar-se cada vez mais comuns e essenciais para o sucesso e a competitividade dos negócios no ambiente atual de grande fluxo de dados. <ref name=" IBM"/></p>
 
== IBMDeepQA ==
<p align="justify">DeepQA é uma arquitetura probabilística paralela maciça baseada em evidências. Para o desafio Jeopardy!, mais de 100 técnicas diferentes são usadas para analisar a linguagem natural, identificar fontes, encontrar e gerar hipóteses, encontrar e pontuar evidências, e mesclar e classificar hipóteses. Muito mais importante do que qualquer técnica em particular é a maneira em que todas essas técnicas são combinadas no DeepQA, de forma que abordagens sobrepostas podem unir forças e contribuir para melhorias na precisão, confiança ou velocidade. A DeepQA é uma arquitetura com uma metodologia complementar, mas não é específica para o Desafio Jeopardy! A IBM começou a adaptá-la para diferentes aplicações comerciais e outros problemas desafiantes a serem explorados, inclusive nas áreas de medicina, pesquisa corporativa e jogos.<ref name=" IBM"/> Os princípios predominantes da DeepQA são:
# '''Paralelismo maciço:''' o paralelismo maciço é explorado na consideração de várias interpretações e hipóteses.
# '''Muitos especialistas:''' facilitam a integração, aplicação e avaliação contextual de uma ampla gama de análises probabilísticas de perguntas e conteúdos fracamente acopladas.
# '''Estimativa universal de confiança:''' não há um único componente que se compromete com uma resposta; todos os componentes produzem características e confianças associadas, pontuando interpretações diferentes de perguntas e conteúdos. Um substrato subjacente de processamento de confiança aprende a empilhar e combinar as pontuações.
# '''Integração de conhecimento superficial e profundo:''' equilibra o uso de semântica restrita e semântica superficial, aproveitando-se de muitas ontologias formadas livremente. <ref name=" IBM"/></p>
 
 
 
 
 
== Bibliografia ==
<references/>

Revisão das 19h24min de 5 de abril de 2016

Watson
Sigla Watson
Designação homenagem a Thomas J. Watson, fundador da IBM
Data de Lançamento 2007
Entidade Criadora IBM
Entidade Gestora IBM
Versão Atual
Requisitos Técnicos
Tipo de Licenciamento
Arquitetura
Sistema Operativo
Especialidade Médica desenvolvido para diagnóstico clínicos
Utilizadores Principais
Função O Watson representa um avanço impressionante no design e análise de sistemas. Ele executa a tecnologia DeepQA da IBM,um novo tipo de capacidade analítica que pode executar milhares de tarefas simultâneas em segundos para fornecer respostas precisas a perguntas.


Luis Carvalho
Mestrado de Informática Médica
Universidade do Porto
up201007548@med.up.pt

Sumário

No último século, a IBM realizou várias inovações científicas graças ao seu compromisso com a pesquisa e sua tradição de Grandes Desafios. Esses Grandes Desafios – como o DeepBlue®, projetado para rivalizar com o campeão mundial de xadrez Gary Kasparov – são um esforço para impulsionar a ciência de maneiras que antes não eram consideradas possíveis. O Watson é o mais novo Grande Desafio de Pesquisa da IBM, projetado para desenvolver a ciência do processamento de linguagens naturais através de avanços na tecnologia de perguntas e respostas.

O Watson é um sistema otimizado para carga de trabalho,baseado na arquitetura IBM DeepQA e executado em um cluster de servidores baseados em processadores IBM®POWER7®. Depois de quatro anos de pesquisa e desenvolvimento intensos por parte de uma equipe de pesquisadores da IBM, o Watson competiu no programa de TV Jeopardy! em fevereiro de 2011, competindo no mesmo nível de especialistas humanos em termos de precisão, confiança e velocidade contra dois dos mais conhecidos e bem-sucedidos campeões de Jeopardy!, KenJennings e Brad Rutter. [1]

Jeopardy! O desafio da IBM

Hoje em dia, com as empresas cada vez mais captando informações essenciais aos negócios em documentação de linguagem natural, há um interesse crescente em sistemas otimizados para carga de trabalho que analisam profundamente o conteúdo de perguntas em linguagem natural para responder a elas com precisão. Avanços na tecnologia de respostas a perguntas (QA, question answering) vão ajudar cada vez mais os profissionais na tomada de decisões críticas e pontuais em áreas como atendimento médico, business intelligence, descoberta deconhecimento, gerenciamento de conhecimento corporativo e atendimento ao cliente. Tendo a QA em mente, a IBM impôs o desafio de desenvolver um sistema computacional chamado “Watson” (em homenagema Thomas J. Watson, fundador da IBM), que pudesse competir ao nível de campeões humanos em tempo real no programa de perguntas e respostas da TV dos EUA "Jeopardy"! O Watson representa um avanço impressionante no design e análise de sistemas. Ele executa a tecnologia DeepQA da IBM, um novo tipo de capacidade analítica que pode executar milhares de tarefas simultâneas em segundos para fornecer respostas precisas a perguntas. Ativado pela tecnologia dos processadores IBMPOWER7, o Watson é um exemplo das cargas de trabalho de análise complexa que estão a tornar-se cada vez mais comuns e essenciais para o sucesso e a competitividade dos negócios no ambiente atual de grande fluxo de dados. [1]

IBMDeepQA

DeepQA é uma arquitetura probabilística paralela maciça baseada em evidências. Para o desafio Jeopardy!, mais de 100 técnicas diferentes são usadas para analisar a linguagem natural, identificar fontes, encontrar e gerar hipóteses, encontrar e pontuar evidências, e mesclar e classificar hipóteses. Muito mais importante do que qualquer técnica em particular é a maneira em que todas essas técnicas são combinadas no DeepQA, de forma que abordagens sobrepostas podem unir forças e contribuir para melhorias na precisão, confiança ou velocidade. A DeepQA é uma arquitetura com uma metodologia complementar, mas não é específica para o Desafio Jeopardy! A IBM começou a adaptá-la para diferentes aplicações comerciais e outros problemas desafiantes a serem explorados, inclusive nas áreas de medicina, pesquisa corporativa e jogos.[1] Os princípios predominantes da DeepQA são:

  1. Paralelismo maciço: o paralelismo maciço é explorado na consideração de várias interpretações e hipóteses.
  2. Muitos especialistas: facilitam a integração, aplicação e avaliação contextual de uma ampla gama de análises probabilísticas de perguntas e conteúdos fracamente acopladas.
  3. Estimativa universal de confiança: não há um único componente que se compromete com uma resposta; todos os componentes produzem características e confianças associadas, pontuando interpretações diferentes de perguntas e conteúdos. Um substrato subjacente de processamento de confiança aprende a empilhar e combinar as pontuações.
  4. Integração de conhecimento superficial e profundo: equilibra o uso de semântica restrita e semântica superficial, aproveitando-se de muitas ontologias formadas livremente. [1]

Bibliografia

  1. 1,0 1,1 1,2 1,3 IBM Corporation 2011 IBM Systems and Technology GroupRoute, “Watson – Um Sistema Projetado para Respostas: O futuro do design de sistemas otimizados para carga de trabalho,” 2011.