Utilizador:MiguelDuarte: diferenças entre revisões
Fonte: aprendis
Saltar para a navegaçãoSaltar para a pesquisa
Sem resumo de edição |
|||
(Há 22 revisões intermédias de 2 utilizadores que não estão a ser apresentadas) | |||
Linha 21: | Linha 21: | ||
[[Utilizador:MiguelDuarte|MiguelDuarte]] ([[Utilizador Discussão:MiguelDuarte|discussão]]) 01h30min de 4 de fevereiro de 2016 (CET) | [[Utilizador:MiguelDuarte|MiguelDuarte]] ([[Utilizador Discussão:MiguelDuarte|discussão]]) 01h30min de 4 de fevereiro de 2016 (CET) | ||
<!-- | <!-- | ||
=Extração de Conhecimento de Dados= | =Extração de Conhecimento de Dados= | ||
“We study the past to understand the present; we understand the present to guide the future.” - William Lund | “We study the past to understand the present; we understand the present to guide the future.” - William Lund | ||
Linha 167: | Linha 64: | ||
No caso destes valores contínuos, existem duas formar de se tratar da divisão: discretização para formar um atributo ordinal categórico (estático, em que se discretiza uma vez no início ou dinâmico em que os intervalos podem ser determinados por tamanho, frequência ou clustering) ou decisão binária (considera todas as divisões possíveis e considera a melhor). | No caso destes valores contínuos, existem duas formar de se tratar da divisão: discretização para formar um atributo ordinal categórico (estático, em que se discretiza uma vez no início ou dinâmico em que os intervalos podem ser determinados por tamanho, frequência ou clustering) ou decisão binária (considera todas as divisões possíveis e considera a melhor). | ||
Alguns dos algoritmos baseados em árvores de decisão e regressão são: ID3 ( | Alguns dos algoritmos baseados em árvores de decisão e regressão são: ID3 (Quinlan, 1979), ASSISTANT (Cestnik et al., 1987), CART (Breiman et al., 1984), C4.5 (Quinlan, 1993). O algoritmo mais utilizado para a classificação é o CART, seguido do seu competidor C4.5. <ref name="citação7">T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media, 2013.</ref> | ||
Tanto uma árvore de decisão como uma árvore de regressão são um grafo acíclico direcionado constituído por nós de divisão com dois ou mais sucessores, ou nós folha. | Tanto uma árvore de decisão como uma árvore de regressão são um grafo acíclico direcionado constituído por nós de divisão com dois ou mais sucessores, ou nós folha. | ||
Linha 183: | Linha 80: | ||
=== Ganho de Informação === | === Ganho de Informação === | ||
O ganho de informação está subjacente ao conceito de entropia. A entropia é uma medição da aleatoriedade de uma variável aleatória, cuja função é: | O ganho de informação está subjacente ao conceito de entropia. A entropia é uma medição da aleatoriedade de uma variável aleatória, cuja função é: | ||
[[Image:image11.png|image11.png]] | |||
Neste caso, p seria a probabilidade de observar A=0 e p-1 a probabilidade de observar A=1. | Neste caso, p seria a probabilidade de observar A=0 e p-1 a probabilidade de observar A=1. | ||
No caso das árvores de decisão, a entropia representa a aleatoriedade do atributo alvo, ou seja, a dificuldade para predizer determinado atributo. O índice Gini é uma regra de ganho de informação usado no CART.Este índice de Gini pode ser considerado uma medida de impureza ou como método de divisão na árvore. Na divisão de atributos | No caso das árvores de decisão, a entropia representa a aleatoriedade do atributo alvo, ou seja, a dificuldade para predizer determinado atributo. O índice Gini é uma regra de ganho de informação usado no CART.Este índice de Gini pode ser considerado uma medida de impureza ou como método de divisão na árvore. Na divisão de atributos categóricos, o índice de Gini pode realizar um multi-way split ou um binary split. Este índice é representado pela seguinte fórmula:<ref name="citação5"/> | ||
[] | |||
[[Image:image12.png|image12.png]] | |||
=== Estratégias de Poda === | === Estratégias de Poda === | ||
Linha 208: | Linha 107: | ||
# Valores ausentes – Se um valor de atributo é desconhecido, não poderá ser continuado o ramo. | # Valores ausentes – Se um valor de atributo é desconhecido, não poderá ser continuado o ramo. | ||
# Atributos contínuos – A ordenação de cada atributo contínuo estima-se que consuma 70% do tempo necessário para induzir uma árvore de decisão. | # Atributos contínuos – A ordenação de cada atributo contínuo estima-se que consuma 70% do tempo necessário para induzir uma árvore de decisão. | ||
# Instabilidade – Breiman (1996) e Kohavi e Kunz (1997) apontaram que variações no conjunto de treino podem produzir grande variações na árvore final. Mudando um nó, todas as | # Instabilidade – Breiman (1996) e Kohavi e Kunz (1997) apontaram que variações no conjunto de treino podem produzir grande variações na árvore final. Mudando um nó, todas as sub-árvores abaixo desse nó mudam. | ||
[[Image:image07.jpg| center| frame | Figura 1. Representação de uma árvore de decisão efetuada no Rapidminer com dados dos sobreviventes do “Titanic”.]] | [[Image:image07.jpg| center| frame | Figura 1. Representação de uma árvore de decisão efetuada no Rapidminer com dados dos sobreviventes do “Titanic”.]] | ||
Linha 750: | Linha 649: | ||
</pre> | </pre> | ||
Qual é o poder preditivo do Teste com respeito à Doença? | Qual é o poder preditivo do Teste com respeito à Doença? | ||
Se A e B são eventos disjuntos, então | Se A e B são eventos disjuntos, então [[Image:image13.png|image13.png]]; | ||
Lei da probabilidade total: | Lei da probabilidade total: [[Image:image14.png|image14.png]] | ||
Lei da probabilidade condicional:<ref name="citação5"/> | |||
[[Image:image15.png|image15.png]] | |||
Dedução: | Dedução: | ||
[[Image:image16.png|image16.png]] | |||
[[Image:image17.png|image17.png]] | |||
[[Image:image18.png|image18.png]] | |||
Já que P(A) = P(A|B) X P(B), então: | Já que P(A) = P(A|B) X P(B), então: | ||
Linha 778: | Linha 677: | ||
O problema de Inferência e o Teorema de Bayes: a sua aplicabilidade é reduzida devido ao grande número de exemplos necessários para calcular, de forma viável. | O problema de Inferência e o Teorema de Bayes: a sua aplicabilidade é reduzida devido ao grande número de exemplos necessários para calcular, de forma viável. | ||
== O classificador | == O classificador Naïve Bayes == | ||
Um dos classificadores Bayesianos mais populares; | Um dos classificadores Bayesianos mais populares; | ||
Linha 801: | Linha 700: | ||
== Análise do algoritmo == | == Análise do algoritmo == | ||
# Superfície de decisão linear ( | # Superfície de decisão linear (Naïve Bayes num problema de duas classes definidos por atributos booleanos é um hiperplano); | ||
# As probabilidades exigidas pela equação que determina a probabilidade de um exemplo pertencer à classe em questão podem ser calculadas a partir do conjunto de treino numa única passagem; | # As probabilidades exigidas pela equação que determina a probabilidade de um exemplo pertencer à classe em questão podem ser calculadas a partir do conjunto de treino numa única passagem; | ||
# Processo de construção do modelo bastante eficiente; | # Processo de construção do modelo bastante eficiente; | ||
Linha 811: | Linha 710: | ||
# Problema da frequência = 0. Se uma das frequências for igual a zero devemos adicionar 1 a todos os valores da tabela;<ref name="citação5"/> | # Problema da frequência = 0. Se uma das frequências for igual a zero devemos adicionar 1 a todos os valores da tabela;<ref name="citação5"/> | ||
== Desenvolvimentos (técnicas para melhorar o desempenho do classificador | == Desenvolvimentos (técnicas para melhorar o desempenho do classificador Naïve Bayes) == | ||
# [http://www.springer.com/us/book/9783540566021 Langley (1993)] = recursivamente constrói uma hierarquia das descrições dos conceitos probabilísticos; | # [http://www.springer.com/us/book/9783540566021 Langley (1993)] = recursivamente constrói uma hierarquia das descrições dos conceitos probabilísticos; | ||
# [http://www.aaai.org/Library/KDD/kdd96contents.php Kohavi (1996)] = árvore de | # [http://www.aaai.org/Library/KDD/kdd96contents.php Kohavi (1996)] = árvore de Naïve Bayes (algoritmo híbrido que gera uma árvore de decisão univariada regular cujas folhas contêm um classificador Naïve Bayes; | ||
# [http://www.springer.com/cn/book/9783540538165 Kononenko (1991)] = classificador semi- | # [http://www.springer.com/cn/book/9783540538165 Kononenko (1991)] = classificador semi-Naïve Bayes (combina pares de atributos, fazendo um atributo produto-cruzado); | ||
# [http://www.worldscientific.com/worldscibooks/10.1142/3251 Pazzani (1996)] = classificador construtivo, encontrar os melhores atributos do produto cartesiano a partir de atributos nominais existentes; | # [http://www.worldscientific.com/worldscibooks/10.1142/3251 Pazzani (1996)] = classificador construtivo, encontrar os melhores atributos do produto cartesiano a partir de atributos nominais existentes; | ||
# [http://machine-learning.martinsewell.com/feature-selection/JohnKohaviPfleger1994.pdf John (1994)] = Bayes flexível para atributos contínuos; | # [http://machine-learning.martinsewell.com/feature-selection/JohnKohaviPfleger1994.pdf John (1994)] = Bayes flexível para atributos contínuos; | ||
Linha 850: | Linha 749: | ||
Deve-se a McCulloch e Pitts (1943) o inicio da pesquisa deste tipo de modelos computacionais tendo sido desenvolvido um primeiro modelo matemático denominado de unidades logicas com limiar (LTU em inglês). | Deve-se a McCulloch e Pitts (1943) o inicio da pesquisa deste tipo de modelos computacionais tendo sido desenvolvido um primeiro modelo matemático denominado de unidades logicas com limiar (LTU em inglês). | ||
Este modelo tem como base o | Este modelo tem como base o Neurónio Biológico sendo que este é o principal bloco de construção do nosso cérebro conforme ilustrado na figura 2 abaixo. | ||
[[Image:image05.png|image05.png | center| frame | Figura 2 - Esquema de um neurónio e da forma como o impulso é realizado ao longo do mesmo.]] | [[Image:image05.png|image05.png | center| frame | Figura 2 - Esquema de um neurónio e da forma como o impulso é realizado ao longo do mesmo.]] | ||
Tendo por base este modelo as RNA foram desenvolvidas com o mesmo principio tendo como componentes básicas unidades de processamento simples a que foi dado o nome de | Tendo por base este modelo as RNA foram desenvolvidas com o mesmo principio tendo como componentes básicas unidades de processamento simples a que foi dado o nome de neurónios artificiais ilustrado a seguir na figura 3 : | ||
[[Image:image08.png|image08.png| center| frame | Figura 3 - Esquema de um | [[Image:image08.png|image08.png| center| frame | Figura 3 - Esquema de um neurónio artificial.]] | ||
As redes neuronais artificiais, consistem em programas únicos de software que imitam a ciência de um neurónio. | As redes neuronais artificiais, consistem em programas únicos de software que imitam a ciência de um neurónio. | ||
Linha 869: | Linha 768: | ||
Uma rede neuronal artificial está, por norma, organizada em camadas, sendo que todos os neurônios de uma determinada camada têm de estar | Uma rede neuronal artificial está, por norma, organizada em camadas, sendo que todos os neurônios de uma determinada camada têm de estar inter-conectados com um neurônio da camada subsequente. | ||
Assim, os | Assim, os neurónios da primeira camada terão o nome de neurónios de input, os das camadas intermédias têm a designação de camadas escondidas e os da última camada serão neurónios de output. | ||
Linha 880: | Linha 779: | ||
O processo de treino no caso especifico deste algoritmo assenta num processo iterativo que constituído por duas etapas ; uma para a frente (forward) e uma par trás (backward) . Na primeira fase cada objeto de entrada é dado a conhecer à rede. O mesmo é recebido por cada um dos | O processo de treino no caso especifico deste algoritmo assenta num processo iterativo que constituído por duas etapas ; uma para a frente (forward) e uma par trás (backward) . Na primeira fase cada objeto de entrada é dado a conhecer à rede. O mesmo é recebido por cada um dos neurónios da primeira camada intermediaria sendo ponderado pelo peso associado à conexão de entrada correspondente . Na camada respetiva cada neurônio pertencente à mesma aplica a função de ativação à soma das suas entradas a produz um valor de saída (output) que é utilizado como valor de entrada (input) da camada de neurónios seguinte. Este processo é continuo ate que os neurónios da camada de saída produzem eles mesmos o seu valor de saída. Este valor é então comparado com o valor de com o valor esperado para saída desse neurônio. A diferença entre os valores achados é o erro cometido pela rede para o objeto introduzido na rede. | ||
Linha 891: | Linha 790: | ||
* Entrada : um conjunto de n objetos de treino | * Entrada : um conjunto de n objetos de treino | ||
* Saída : Rede MPL com valores de pesos ajustados | * Saída : Rede MPL com valores de pesos ajustados | ||
* inicializar | * inicializar pesos da rede com valores aleatórios | ||
* | * inicializar erro total=0 | ||
* repita | * repita | ||
** para cada objeto xi do conjunto faça | ** para cada objeto xi do conjunto faça | ||
*** para cada camada de rede , a partir da primeira camada intermediaria. | *** para cada camada de rede , a partir da primeira camada intermediaria. | ||
**** Faça para cada | **** Faça para cada neurónio njl da camada: | ||
***** calcular valor da | ***** calcular valor da saída produzida pelo neurónio , f | ||
**** fim | **** fim | ||
*** fim | *** fim | ||
Linha 903: | Linha 802: | ||
*** para cada camada de rede a partir da camada de saída faça: | *** para cada camada de rede a partir da camada de saída faça: | ||
**** para cada neurónio njl da camada faça | **** para cada neurónio njl da camada faça | ||
***** ajustar pesos do | ***** ajustar pesos do neurónio utilizando Equação | ||
**** fim | **** fim | ||
*** fim | *** fim | ||
Linha 910: | Linha 809: | ||
* até erro total < | * até erro total < | ||
</blockquote> | </blockquote> | ||
=Exemplos Rapidminer= | |||
<gallery> | |||
Ficheiro:Image19.png|Árvore de decisão e respetivo teste de performance | |||
Ficheiro:Image20.png|Cross-Validation de uma árvore de decisão | |||
Ficheiro:Image21.png|Processo de Cross-Validation | |||
Ficheiro:Image22.png|Resultado de performance de uma árvore de decisão | |||
Ficheiro:Image23.png|Exemplo com todos os métods abordados | |||
</gallery> | |||
=Conclusão= | =Conclusão= | ||
Linha 916: | Linha 824: | ||
=Referências= | =Referências= | ||
<references/> | <references/> | ||
Miguel Duarte, João Sabino, Mário Leal e Ricardo Lourenço 05h19min de 22 de fevereiro de 2016 (CET) | |||
--> |
Edição atual desde as 21h30min de 21 de abril de 2016
MiguelDuarte | |
---|---|
Área(s) de Atuação | Informática Médica |
Entidade(s) Criadora(s) | Mestrado em Informática Médica |
Entidade(s) Gestora(s) | Faculdade de Medicina da Universidade do Porto |
Data de Lançamento | 2016 |
About me
Licenciado em Engenharia de Informática pelo ISEP.
A frequentar Mestrado em Informática Médica na FMUP e FCUP.
Developer no Centro Hospitalar São João, co-responsável pelo desenvolvimento de várias aplicações, móveis e desktop, para uso dos vários grupos profissionais.
Formador de iOS no ISEP com formações desde o iOS 4 até ao iOS 9.
Freelancer como Developer de iOS e Windows Phone.
Amador entusiasta no desenvolvimento de aplicações para domótica e iOT
MiguelDuarte (discussão) 01h30min de 4 de fevereiro de 2016 (CET)